آموزش هوش تجاری | Business Intelligence

آموزش هوش تجاری | Business Intelligence

نوشته شده توسط: مسعود طاهری
۲۴ بهمن ۱۳۹۸
زمان مطالعه: دقیقه
5
(1)

هوش تجاری (Business Intelligence) چیست؟

هوش تجاری یا Business Intelligence شامل مجموعه‌ای از مهارت‌ها، تکنولوژی‌ها و برنامه‌های کاربردی می‌باشد که به‌ منظور جمع‌آوری، یکپارچه‌سازی، تجزیه ‌و‌ تحلیل و ایجاد دسترسی به داده‌های سازمان، مورد استفاده قرار می‌گیرند. چنانچه بخواهیم به طور خیلی ساده هوش تجاری (BI) را تعریف کنیم می‌توان گفت که هوش تجاری شامل کلیه روش‌ها و فرآیندهای کامپیوتری است که داده را به اطلاعات و سپس به دانش تبدیل می‌کند. در نهایت هوش تجاری کسب و کار شما را بهبود خواهد بخشید.

اهداف هوش تجاری

هوش تجاری در قالب هر تعریفی به دنبال افزایش سودآوری سازمان با استفاده از اتخاذ تصمیمات هوشمند و دقیق است. برای رسیدن به تصمیمات هوشمند در سازمان اهداف زیر مدنظر است:

1- جمع آوری داده‌های سازمان بر اساس سیستم‌های عملیاتی
کاربران در هر سازمانی سیستم‌های نرم‌افزاری دارند که همیشه در حال وارد کردن داده‌ها به آن سیستم‌ها هستند حال شما در هوش تجاری اطلاعات و داده‌های این سیستم‌های جزیره‌ای را جمع آوری خواهید کرد تا بتوانید در پروژه هوش تجاری از آن استفاده کنید.

2- یکپارچه سازی داده‌های سازمان
بعد از اینکه اطلاعات را جمع آوری کردید حال بایستی این اطلاعات را یکپارچه‌سازی کنید.

3- ذخیره‌سازی اطلاعات جمع آوری شده
اطلاعات یکپارچه شده را بایستی در یک انباره داده ذخیره کنید. ساخت و طراحی انباره داده (DW) را در ادامه بصورت کامل توضیح خواهیم داد.

4- تجزیه و تحلیل اطلاعات
در مرحله آخر شما می‌توانید در ابعاد مختلف، اطلاعات خود را بر اساس تمام سیستم‌های اطلاعاتی تجزیه و تحلیل کنید.

یک پروژه هوش تجاری (BI) موفق چگونه شکل می‌گیرد؟

برای اینکه بتوانیم یک پروژه موفق داشته باشیم نیاز به موارد مختلفی داریم ولیکن مهمترین مسئله در اجرای یک پروژه موفق هوش تجاری در حوزه فنی استفاده از ابزارهای درجه یک و مطرح است. در اینجا می‌خواهیم این ابزارها را بر اساس ارزیابی موسسه گارتنر بررسی کنیم.
نکته قابل تجوه این است که شما هر چقدر از ابزارها و تکنولوژی‌های مدرن استفاده کنید، موفقیت پروژه شما از لحاظ فنی بسیار بالا است.

تماشای ویدئو: هوش تجاری چیست؟
این ویدئو را حتما تماشا کنید: بررسی یک پروژه هوش تجاری به روش مایکروسافت
نیک‌آموز TV: ویژگی‌های جدید SQL Server 2017

موسسه گارتنر (Gartner) چیست و چه کاری انجام می‌دهد؟

موسسه گارتنر یک موسسه تحقیقاتی که در سال 1979 تاسیس شده است. این موسسه در زمینه های مربوط به فناوری تحقیق می کند و به طور منظم نتایج این تحقیقات را منتشر می کند. عمده این تحقیقات معطوف به رهبران اصلی صنعت فناوری اطلاعات است که شامل سازمانهای دولتی، کسب و کارهای بزرگ High-Tech و تلکام، سرویس های تخصصی و سرمایه گذاران دنیای تکنولوژی می‌باشند. این موسسه از چندین بخش شامل تحقیقات، برنامه‌های عملیاتی، مشاوره و برگزاری همایش تشکیل شده است. موسسه گارتنر هم اکنون بیش از ۵۷۰۰ کارمند شامل ۱۲۸۰ نفر در بخش تحقیق و توسعه، در ۸۵ کشور جهان دارد.

با توجه به بررسی‌های موسسه گارتنر شرکت مایکروسافت در حوزه هوش تجاری جزء پرچمداران این حوزه است پس در انتخاب ابزارهای هوش تجاری بایستی دقت لازم را داشته باشیم تا بتوانیم یک پروژه موفق اجرا کنیم.

هوش تجاری به چه سوالاتی پاسخ می‌دهد؟

فرض کنید در حوزه فروش می‌خواهیم به سوالات بسیار ساده زیر پاسخ دهیم. این سوالات در تصویر آورده شده است. حال سوال اینجاست اگر شما 20 شعبه در کشور (20 بانک اطلاعاتی) داشته باشید چه راهکاری (به جزء هوش تجاری) دارید که بتوانید به سوالات زیر پاسخ دهید. در واقع پاسخ به این دست سوالات زمانی که کار کمی پیچیده می‌شود سخت یا شاید غیر ممکن است.
حال اگر جنس سوالات را کمی عوض کنیم چطور، اگر سوالاتی مانند آینده نگری از شما بپرسیم آیا می‌توانید به این راحتی پاسخ آنها را پیدا کنید. قطعا بودن داشتن هوش تجاری پاسخ به این سوالات سخت و در برخی حالات غیرممکن است.

پیشنهاد می‌کنیم در رابطه با سوالات بالا فیلم آموزش هوش تجاری را با تدریس مسعود طاهری مشاهده کنید.

مسیر اجرا و اجزای اصلی یک پروژه هوش تجاری

برای اینکه یک پروژه هوش تجاری موفقی داشته باشیم بایستی از اجزای اصلی هوش تجاری (BI) استفاده کنیم.

1- Data Sources
منابع اطلاعاتی مهمترین جزء از اجزاء یک سیستم BI می‌باشد. چناچه سازمان شما فاقد سیستم عملیاتی باشد نباید انتظار معجزه از یک سیستم BI داشته باشد.

2- ETL
با توجه به اینکه داده‌های موجود در سیستم‌های عملیاتی در بانک‌های اطلاعاتی مختلف قرار گرفته‌اند برای این داده‌ها را استخراج و تحلیل نمود باید با ابزارهای ETL به این منابع اطلاعاتی مراجعه کرده و داده‌های خام از سیستم‌های اطلاعاتی استخراج نمود.
به طور خیلی ساده هدف ETL استخراج داده‌ها از منابع اطلاعاتی و انجام تبدیلات لازم به منظور درج در Data Warehouse یا انباره داده می‌باشد.

3- Data Warehouse یا انباره داده
انباره داده یک بانک اطلاعاتی است که هدف آن جمع‌آوری داده‌های موجود در سیستم‌های عملیاتی است. ساختار این بانک اطلاعاتی بر اساس معماری ابعادی بوده و داده‌ها در آن به صورت دوره‌ای و در فواصل زمانی خاصی طی پروسه ETL به آن اضافه می‌شود.

4- OLAP Analysis
برای اینکه بتوانیم تحلیل‌های مفید و سودمندی بر روی داده‌ها داشته باشیم باید بانک اطلاعاتی خاص مربوط به آن را ایجاد کنید. ساختار این نوع بانک‌های اطلاعاتی بر پایه Cube یا مکعب اطلاعاتی می‌باشد. با استفاده از این نوع ساختار می‌توان پیچیده‌ترین گزارش‌های تحلیلی را استخراج نمود.

5- Data Mining یا داده کاوی
داده‌کاوی یکی از اهداف راه‌اندازی پروژه‌های BI می‌باشد. با استفاده از استفاده از این علم می‌توان اطلاعات پنهان و همچنین الگوها و روابطی مشخص را مابین حجم زیادی از داده بدست آورد.

6- Reporting
برای اینکه بتوانیم گزارش‌ها تحلیلی را Visualize کنیم باید از ابزارهای مربوط به این حوزه استفاده کنیم. از نمونه ابزارهای مربوط به این حوزه می‌توان به SSRS، Power BI، Mobile Report Publisher، Excel و… اشاره کرد.

ساخت انبار داده (Data Warehouse)

انـبـار داده بـه مجـموعـه‌ای از داده‌هــا گفـتـه می‌شود که از منابع مختلف اطلاعاتی سازمان جمع‌آوری، دسته‌بندی و ذخیره می‌شود.
انبار داده یا Data Warehouse پایگاه داده‌ای است که برای گزارش‌گیری و تحلیل داده به کار می‌رود و بعنوان هسته اصلی یک سیستم BI به شمار می‌آید. به عبارت دیگر انبار داده یک مخزن داده مرکزی از داده‌های تجمیع شده است که از سیستم‌ها و منابع مختلف سازمان جمع‌آوری شده است. انبار داده یک بانک اطلاعاتی رابطه‌ای غیرنرمال است که داده‌های حال و گذشته را در یک مکان واحد تجمیع کرده است و هدف اصلی آن پوشش گزارش‌گیری و نیازهای تحلیلی یک سازمان به کار گرفته می‌شود.

انبار داده یا Data Warehouse چیست؟ [بخش اول]
انبار داده یا Data Warehouse چیست؟ [بخش دوم]
نیک آموز TV [قسمت چهارم]: Data Warehouse در SQL Server

بررسی پروسه ETL در هوش تجاری

ETL مخفف کلمات Extract Transform Loading می‌باشد. در طی این پروسه ما می‌توانیم با استفاده از این مفهوم داده‌ها را از Data Sourceهای مختلف استخراج و پس از انجام تبدیلات لازم در مقصد آنها را بارگزاری نماییم. توجه داشته باشید که برای پر شدن یک Data Warehouse دقیقاً این کارهایی که به آنها اشار شد باید انجام شود.

آشنایی با سرویس SSIS:
در SQL Server برای انجام عملیات ETL ما از سرویس SSIS استفاده خواهیم کرد.

آشنایی با برنامه SQL Server Data Tools:
برای اینکه بتوانیم روال‌های ETL را در پیاده‌سازی کنیم ابزاری به نام Data Tools وجود دارد. در این جلسه ما دانشجویان را با نحوه کار با این ابزار و قسمت‌های مختلف آن آشنا کردیم.

ایجاد یک Package ساده:
با توجه این که در این درس دانشجویان با ابزار و قسمت‌های مختلف Data Tools آشنا شدند یک SSIS Package برای Export داده‌های جدولی خاص طراحی کردیم تا دانشجویان با مفهوم ETL دقیق‌تر آشنا شوند. لازم می‌دانم اشاره کنم هدف این بود که دانشجویان آشنایی اولیه با برخی از کامپوننت‌ها و… موجود در Data Tools آشنا شوند.

این فایل صوتی را گوش دهید: SSIS چیست؟
گزارش دوره هوش تجاری: جلسه سوم
گزارشی از جلسه چهارم دوره هوش تجاری
دوره آموزشی هوش تجاری گزارش جلسه هشتم
مطالعه تمام گزارشات دوره آموزش هوش تجاری

آموزش هوش تجاری | یادگیری هوش تجاری

اگر بخواهید هوش تجاری را یاد بگیرید نیاز به یک مسیر آموزشی دارید، این مسیر آموزشی در نیک آموز وجود دارد و شما می توانید هوش تجاری را به سبک مایکروسافت و با سرفصل های بسیار منحصربفرد یاد بگیرید.

مسیر راه یادگیری هوش تجاری مایکروسافت
دوره آموزش هوش تجاری
آموزش Power BI

شاخص‌ های عملکرد سازمان (KPI)

برای سازمان‌ها، ادراک و یکپارچه‌سازی داده‌ها در تمامی سطوح، یکی از بزرگ‌ترین چالش مدیریتی به شمار می‌آید و تدوین مقیاس‌های اندازه‌گیری، به‌روز نگه‌داشتن، مقایسه و تمرکز بر آن‌ها در سازمان، مشکلی همیشگی است که با ورود سیستم هوشمندی کسب‌وکار (و استقرار انبار داده‌های موضوعی)، اکثر این مشکلات ساماندهی خواهند شد.

داشبوردهای مدیریتی، در مشاهده شاخص‌های حیاتی به ‌تمامی سطوح سازمان یاری می‌رسانند و به کاربر امکان دنبال کردن جایگاه‌های سازمان توسط شاخص‌ها را می‌دهند. با دنبال کردن شاخص‌های متعدد و موردنظر و تحلیل روندها، می‌توان درک بهتر از اینکه سازمان و حوزه‌های مرتبط چگونه عمل می‌کند، کسب کرد.

طراحی و ساخت داشبورد مدیریتی در هوش تجاری

یکی از قویترین ابزارهای نمایش گزارشات و نمایش شاخص‌های کلیدی (KPI) پروژه‌های هوش تجاری Microsoft Power BI است. این ابزار قابلیت‌ نمایش گزارشات بر روی موبایل و صفحات وب را نیز دارد. بدون شک می‌توان ادعا کرد که نرم افزار Power BI قدرتمندترین و در عین حال ساده ترین نرم افزار ساخت و طراحی داشبوردهای مدیریتی است. اگر شما اکسل را در حد خوب بلد باشید یادگیری و آموزش Power BI برای شما مثل آب خوردن است.

فیلم کارگاه فقط 1 هزار تومان: مروری بر داشبوردهای سیستم‌ فروش با استفاده از Power BI
دوره کاملا حرفه‌ای و جامع آموزش Power BI
نیک‌آموز TV: استفاده از Style و فونت فارسی در Power BI
استفاده از نقشه آفلاین در Power BI

داده کاوی (Data Mining) در هوش تجاری

تا اینجا ما در پروژه های هوش تجاری در مورد گذشته و حال صحبت کردیم ولی اگر بخواهید وارد مباحث پیشرفته آینده نگری یا پیش بینی یا داده کاوی یا دیتا ماینینگ بشوید در حقیقت دارید به حالت ایده‌آل یک پروژه هوش تجاری می‌رسید. در واقع زمانی می توانید وارد فاز داده کاوی بشوید که شما یک پروژه هوش تجاری کلید زده باشید و سازمان به بلوغ لازم جهت اجرای یک پروژه با عنوان داده کاوی رسیده باشد.

در مورد مباحث فنی داده کاوی از بین معدود مدل های پذیرفته شده در شاخه داده کاوی، مدل CRISP-DM و مدل ASUM جزو شناخته شده ترین و مقبولترین مدل هایی هستند که فرآیند داده کاوی و حل مسئله را یک روال مستمر و رو به تکامل میبیند و همچنین در عرصه عمل نیز توان پیاده سازی بالاتری داشته اند. از آنجا که مدل CRISP-DM دارای تعدد پیاده سازی بالاتر و قدمت بیشتری بوده و همچنین پایه و اساس مدل ASUM نیز میباشد، به عنوان مدل پیشنهادی توسط تیم نیک توصیه میگردد.
در مدل CRISP-DM طی هر بار اجرای فرآیند، مسئله در قالب شش فاز اصلی مورد شناخت، تحلیل و مدل سازی، به شرح ذیل قرار میگیرد.

طی فاز اول (Business Understanding):
تیم پروژه به دنبال درک مسئله، اهداف و نیازمندیهای مشتری از نقطه نظر کسب و کار میباشد.

طی فاز دوم (Data Understanding):
اطلاعات قابل دسترس (درون یا برون سازمانی) مورد شناسایی قرار گرفته و با توجه به کاربرد آن در مسئله تحت ارزیابی کمی و کیفی قرار میگیرند و درصورت نیاز مسئله طرح شده توسط کارفرما، با توجه به اطلاعات قابل دسترس، تعدیل میگردد (جهت تعدیل/اصلاح صورت مسئله و خواسته های مشتری که در فاز قبل مشخص گردیده با داشته های اطلاعاتی مشتری). همچنین طی این فاز تیم داده کاوی با ماهیت اطلاعات قابل دسترس آشنایی بیشتری پیدا نموده و سعی مینماید از اطلاعات در دسترس دیدگاه های مناسبی کسب نماید.

در فاز سوم (Data Preparation):
تیم داده کاوی اقدام به آماده سازی داده ها جهت استفاده در مدل سازی مینماید، طی این فاز معمولا اقداماتی همچون انتخاب مشخصه ای اطلاعاتی، یکپارچه کردن اطلاعات از منابع مختلف و پاکسازی اطلاعات انجام میپذیرد. لازم به ذکر است وجود انبار داده از پیش آماده شده میتواند به افزایش سرعت اجرای کار در این فاز کمک قابل توجهی نماید.

در فاز چهارم (Modeling):
تیم داده کاوی اقدام به تعیین تکنیک های مدل سازی قابل استفاده جهت حل مسئله مینماید، و سپس پارامترهای مورد نیاز جهت Tune کردن مدل ها را تعیین مینماید، همچنین در این فاز با توجه به تکنیک مصرفی، ممکن است نیاز باشد تا داده های آماده شده در فاز قبل مورد تغییر و تحول قرار گیرند، پس بعضا از این فاز عملیات عقبگرد به فاز قبل، برای ساختار دهی مجدد اطلاعات صورت میپذیرد.

در فاز پنجم (Evaluation):
مدل های ساخته شده (که قاعدتا انتظار میرود از کیفیت بالایی برخوردار باشند) مورد تست و ارزیابی قرار میگیرند تا نقاط کور احتمالی آنها استخراج گردد تا بهترین مدل برای حل مسئله انتخاب شود، همچنین در این مرحله طی تعامل با کارفرما موثر بودن مدل انتخابی نیز بررسی میگردد و درصورتیکه مدل انتخاب شده برای حل مسئله مناسب نباشد، کل فرآیند مجددا از فاز اول آغاز میگردد.

طی فاز ششم (Deployment):
تیم داده کاوی با توجه به الزامات کارفرما، اقدام به ارائه نتایج اجرای مدل به کارفرما مینمایند، این فاز میتواند بنا به درخواست کارفرما، منحصرا گزارشی غنی و قابل درک توسط کارفرما از نتیجه اجرای مدل باشد و یا میتواند سیستمی نرم افزاری باشد که کارفرما بتواند توسط آن مدل ساخته شده را بصورت مکرر مورد اجرا و بهره برداری قرار دهد.

یادگیری ماشین (Machine Learning) در هوش تجاری

به نقل از ویکی پدیا: شما احتمالاً چندین بار در روز از یادگیری ماشین استفاده می‌کنید، حتی بدون آنکه بدانید. هر بار که شما یک جستجوی اینترنتی در گوگل یا بینگ انجام می‌دهید، یادگیری ماشینی انجام می‌شود چراکه نرم‌افزار یادگیری ماشینی آن‌ها چگونگی رتبه‌بندی صفحات وب را درک کرده‌است. هنگامی که فیس‌بوک یا برنامه عکس اپل دوستان و تصاویر شما را می‌شناسد، این نیز یادگیری ماشین است.

هر بار که ایمیل خود را چک می‌کنید و فیلتر هرزنامه شما را از داشتن مجدد هزاران هرزنامه خلاص می‌کند نیز به همین دلیل است که کامپیوتر شما آموخته‌است که هرزنامه‌ها را از ایمیل غیراِسپم تشخیص دهد. این همان یادگیری ماشین است. این علمی است که باعث می‌شود کامپیوترها بدون نیاز به یک برنامه صریح در مورد یک موضوع خاص یاد بگیرند.

پیشنهاد می‌کنم فیلم یادگیری ماشین در SQL Server را تماشا کنید.

گام بعدی چیست؟

خواننده گرامی امیدوارم از این مقاله جامع در مورد هوش تجاری لذت برده باشید، گام بعدی شرکت در وبینار 90 دقیقه آموزش هوش تجاری است. اگر می‌خواهید یک متخصص هوش تجاری شوید و درآمد بالایی کسب کنید، پیشنهاد می‌کنم فیلم وبینار هوش تجاری را همین الان دانلود کنید.

دانلود فیلم وبینار 90 دقیقه‌ای آموزش هوش تجاری

کاملا فارسی و کاملا کاربردی، همین الان دانلود کنید و فیلم را مشاهده کنید.

چه رتبه ای می‌دهید؟

میانگین 5 / 5. از مجموع 1

اولین نفر باش

title sign
معرفی نویسنده
مسعود طاهری
مقالات
26 مقاله توسط این نویسنده
محصولات
42 دوره توسط این نویسنده
مسعود طاهری

مسعود طاهری مدرس و مشاور ارشد SQL Server & BI ،  مدیر فنی پروژه‌های هوش تجاری (بیمه سامان، اوقاف، جین وست، هلدینگ ماهان و...) ، مـــدرس دوره‌هــای SQL Server و هوش‌تجاری در شرکت نیک‌آموز و نویسنده کتــاب PolyBase در SQL Server

پروفایل نویسنده
title sign
معرفی محصول
title sign
دیدگاه کاربران

    • ممنون از مقاله جامع و مفیدتان
      البته بسیاری از لینک ها کار نمی کند. امیدوارم که این موضوع نیز برطرف شود

    • کامل و مفید

    • کامل و مفید

    • از نظر آموزشی و علمی پکیج وسوه کننده ایی بنظر میاد ولی از نظر هزینه خیر 🙁

    • از نظر آموزشی و علمی پکیج وسوه کننده ایی بنظر میاد ولی از نظر هزینه خیر 🙁